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The authors  examine the r e su l t s  of expe r imen ta l  invest igat ion of local  and ave rage  heat  
t r a n s f e r  ove r  a f lat  plate ,  with the ent i re  plate  heated,  and with the initial  sect ion heated, in 
the Reynolds number  range 2 . 1 0  2 to 5" 1 0  5 . 

Heat  t r a n s f e r  to a f lat  plate in a ful ly-developed turbulent  boundary l ayer  includes two specia l  c a se s  
with different  boundary conditions. The f i r s t  case  occurs  when the heat  t r an s f e r  begins  immedia te ly  at 
the leading edge and, there fore ,  the the rma l  and dynamic boundary l aye r s  f o r m  s imul taneously  (complete 
heating). With these boundary conditions the Reynolds number  in the heat  t r a n s f e r  equations is m o r e  than 
105, as  a rule ,  s ince ful ly-developed flow exis t s  only outside the dynamic initial  sect ion (X 1 > Ldyn). In 
the second case  the heat  t r a n s f e r  does not begin a t  the leading edge, but fur ther  downst ream.  If the extent 
of  the i so the rma l  init ial  sect ion exceeds  the hydrodynamic s tabi l izat ion length (X 0 > Ldyn) , then the heated 
sur face  l ies  en t i re ly  in the region of developed boundary layer ,  and the quantity Rexl  in the heat t r a n s f e r  

equations can take any value, f r o m  zero  upwards .  These  boundary conditions a r e  typical  for  the t he rma l  
init ial  sect ion.  

Heat t r a n s f e r  to a comple te ly  heated plate  has rece ived  detai led expe r imen ta l  study. Cor re la t ions  
have been given in [1, 2]. The t he rm a l  ini t ial  section,  pa r t i cu la r ly  for  Rexi  < 105, has not been inves t i -  

gated fully. Also,  the r e su l t s  a r e  cont radic tory .  In [1, 3-6] the heat  t r an s f e r  coeff icient  in the t he rma l  
ent rance  section is  given by the equations for  complete  heating, using the coordinate  X 1 as  the governing 
dimension.  However ,  the expe r imen ta l  data published in [7-16] indicate that the total  heating equations 
o v e r e s t i m a t e  the values  of a k by  10-30% in the t he rma l  ent rance  section.  

A d iscuss ion  is given below of resu l t s  of an exper imen ta l  invest igat ion of local  and ave rage  heat  
t r a n s f e r  to a p l a t e  washed by a pa ra l l e l  s t r e a m  of a i r  and with heating over  the complete  plate and in the 
t he rma l  init ial  sect ion.  

Local  Heat  T r a n s f e r .  Measu remen t s  of local  heat  t r a n s f e r  coeff icients  were  made by a s t eady-s t a t e  
method with t w = const  on a plate of thickness  6 = 8 m m  and length L = 280 m m ,  with a sharp  leading edge 
of angle 90 ~ A descr ip t ion  of the wind tunnel, which has a s q u a r e  working sect ion of s ize 280 • 280 m m  2, 
has  been given in [17, 18]. The const ruct ion of the plate  is  shown in Fig.  1. It cons is t s  of three  wa t e r -  
cooled s teel  sect ions  1 with pol ished working sur face ,  fas tened to a common base  plate  2 by means  of 
c lamps  3. Water  en te r s  the in terna l  cavity of each sect ion through the inlet  tube 4, and, a f t e r  pass ing  
around a baffle,  l eaves  through the s leeve .  The thermocouples  5 m e a s u r e  the initial  and final wa te r  t e m -  
p e r a t u r e s .  The plate  occupies 3% of the wind tunnel c r o s s  sect ion.  

Five " isola ted"  heat  flux gages 6 and thermocouples  7 [19] a r e  f lush-mounted in the sur face  of the 
measu r ing  section.  The plate  is suspended in the cen te r  of the wind tunnel, held by the mounting b r a c k e t  8 
in the ceil ing 9. Longitudinal and t r a n s v e r s e  movemen t s  a re  precluded by means  of the rod 10. In t e r -  
change of the sect ions and rotat ion of the plate  through 180 ~ allows the m e a s u r e m e n t  of a k along the length 
of the plate at a pitch of 12-15 m m .  
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F i g .  1. C o n s t r u c t i o n  of the p l a t e :  a) a s s e m b l y  of the f u l l y -  
h e a t e d  p l a t e ;  b) a s s e m b l y  of the p l a t e  wi th  hea t ed  i n i t i a l  
s e c t i o n ;  1) w a t e r - c o o l e d  s e c t i o n s ;  2) b a s e  p l a t e ;  3) f i t -  
t ings ;  4) tube  fo r  coo l ing  w a t e r  supp ly ;  5) t h e r m o c o u p l e s  
fo r  m e a s u r e m e n t  of w a t e r  t e m p e r a t u r e ;  6) hea t  f lux g a g e s ;  
7) t h e r m o c o u p l e s  fo r  m e a s u r e m e n t  of wa l l  t e m p e r a t u r e ;  8) 
b r a c k e t ;  9) w i n d t u n n e l w o r k i n g s e c t i o n c e i l i n g ;  10) s u p p o r t  
r od ;  11) p l a s t i c  t e x t o l i t e  s t r i p ;  12) l o o s e  wadd ing .  

D u r i n g  the t e s t s  wi th  the i s o t h e r m a l  i n i t i a l  s e c t i o n ,  one of the two w a t e r - c o o l e d  s e c t i o n s  was  r e -  
p l a c e d  by  t e x t o l i t e  s t r i p s  of the s a m e  s i ze  (X 0 = 140 m m  o r  X 0 = 210 ram) .  To m i n i m i z e  t h e r m a l  c o n t ac t  
b e t w e e n  the h e a t e d  and u n h e a t e d  s u r f a c e s  of the  p l a t e ,  the t h i c k n e s s  of the t ex to l i t e  s t r i p  a t  the i n t e r f a c e  
was  r e d u c e d  to 1 r am,  a s  shown in F i g .  1. 

The  l o c a l  hea t  t r a n s f e r  c o e f f i c i e n t  a t  the c e n t e r  of the h e a t  f lux gage  i s  g iven  by  

kE 
ac = ~ W/m2"deg " (1) 

tpot--t  w 

The a i r  t e m p e r a t u r e  in  the t e s t s  was  t.po t = 50-55~ the w a l l  t e m p e r a t u r e  was  t w = 12-18~ the c o e f f i c i e n t  
of r a d i a t i v e  hea t  t r a n s f e r  was  a r = 2 . 0 - 2 . 5  W / m  2 . d e g ,  the  a i r  s p e e d  was  W = 1 .5 -35 .0  m / s e c ,  the t u r b u -  
l e n c e  l e v e l  of the i n c i d e n t  f low was  e = 2.2 4- 0.270, and  the gage  c o n s t a n t s  f e l l  in  the r a n g e  k = 490-580 W 
/ m  2 .~V.*  The  w a t e r  f low r a t e  in e a c h  s e c t i o n  was  c o n t r o l l e d  a c c o r d i n g  to the t e m p e r a t u r e  i n c r e m e n t ,  
which  was  m a i n t a i n e d  to b e  1~ 

The  t e s t  da ta  o b t a i n e d  with  the  c o m p l e t e l y  h e a t e d  p l a t e  in the r a n g e  Re X = (30-500) �9 103 a r e  shown in 
F i g .  2a.  In th is  s e r i e s  of e x p e r i m e n t s  the m e a s u r e m e n t s  w e r e  m a d e  a t  d i s t a n c e s  f r o m  the l e a d i n g  edge  of 
m o r e  than i 4 0  m m ,  s i n c e  the f low s t a b i l i z e d  a t  l e ng th s  X = (130-140) m m  [18], fo l lowing  s e p a r a t i o n  and 
r e a t t a c h m e n t  a t  the  l e a d i n g  edge .  C u r v e  1 shows  the Mikheev  f o r m u l a ,  Eq. (2a) of [1_], which  fo r  a i r  

* The  c o n s t r u c t i o n  and c a l i b r a t i o n  of the  h e a t  f lux g a g e s  was  p e r f o r m e d  a t  the Ins t i t u t e  of T h e r m o p h y s i c s  
of the A c a d e m y  of S c i e n c e s  of the  U k r a i n i a n  SSR. 
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Resul t s  of invest igat ion of local  heat  t r a n s f e r  
to the plate:  a) with total  comple te  heating for  X > Ldyn 
[1) Eq. (2); 2) Eq. (3)]; b) in the t he rma l  init ial  s e c -  
tion with X o > Ldyn Eq. (3b); X0/X: I) 0.98; II) 0.96; 
III) 0,92; IV) 0.84; V) 0.78]. 

(Pr  "~ 0.71)* takes  the fo rm (2b): 

Nux = 0.0296 Re.~sPr ~ (Prgot,;Prw)O,25 . (2a) 

St = Nux/RexPr = 0~036 Re~~ (2b) 

Curve 2, which r e p r e s e n t s  the exper imen ta l  points with a s ca t t e r  of • for  Re X > 70 �9 103, was ca lcu-  
la ted f r o m  Eq. (3a) of Reynolds et  a h  [12], which, for  a i r  with P r  ~ 0.71 and T p o t / T  w < 1.1, takes  the 
f o r m  (3b): 

St = 0.0296 Pr~. 'Re5 ~ w/Tpor) -~ (3a) 

St = 0.0325 Re~O,L (3b) 

Equation (3a) for  the p r e s e n t  values  of Re X a g r e e s  with the K a r m a n  analogy and the re la t ion  for  the 
f r ic t ion fac tor  der ived  f r o m  the veloci ty dis tr ibut ion in a dynamic boundary l aye r  with a one-seventh  power  
law [12, 20]: 

c t = 0.0296 Re~ 0,2. (4) 

As can be seen in Fig.  2, Eq. (2b) leads to an ove re s t ima te  of local  heat  t r a n s f e r  coeff icients  by roughly 
10%. 

The r e su l t s  of invest igat ion of heat  t r a n s f e r  on the t he rma l  init ial  sect ion of the plate  for  Rex1 

= (0.25-100). 103, X0/X = (0.75-0.98), and R e x  > 40.103 a r e  shown in Fig.  2b. The exper imen ta l  points 
a r e  l ayered  accord ing  to the p a r a m e t e r  X0/X. F o r  Rex1 < 104 the d ivergence  of the exper imen ta l  points 
f r o m  values calculated according  to Eq. (3b) for  the Stanton number  a r e  pa r t i cu la r ly  noticeable (up to 40%) 
in the immedia te  vicinity of the beginning of heating.  Fo r  Rex~ > 104 and fixed values  of X0/X the location 

of the exper imen ta l  points  follows the slope n = -0 .2 .  F o r  Rex t  < 104 this tendency is  a r r e s t e d :  the slope 
d e c r e a s e s  monotonical ly,  approaching the value n = -0 .4 .  

In [7-16] the exper imenta l  local  heat  t r a n s f e r  data in the t he rma l  init ial  sect ion were  c o r r e c t e d  by 
introducing a f ac to r  into the total  heating formula:  

St0 = St ~ (Xo/X). (5) 

This  co r rec t ion  is  based  on a co r re l a t ion  of Seban, pubUshed f i r s t i n  [13], and then conf i rmed  exper imenta l ly  
and theore t ica l ly  in [7, 12, 15, 21-23]. With Reynolds number  r e fe renced  to the heated length the 8eban 
co r re l a t ion  takes  the following form:  

* The physica l  constants  in the nondimensional  numbers  St, Re, and P r  he re  and below a r e  evaluated at 
flow t empera tu r e .  
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 tXo,X  = i 1_ [ l _  x~176 (6) 

Equation (6) and the r e su l t  of [7, 12, 22] pe r t a in  to the region Rex l  > 105, where  the t e m p e r a t u r e  d i s -  

t r ibut ion and t h e r m a l  boundary layer ,  like the veloci ty dis t r ibut ion,  follows the one-seven th  power  law. 
F o r  reduced value of Rex1 the thickness  of the t he rma l  boundary l ayer  becomes  sma l l e r  re la t ive  to that of 

the dynamic boundary l aye r .  F o r  X 1 ~ 0 the t he rma l  boundary  l aye r  is comple te ly  contained in the dynamic 
l a m i n a r  sublayer ,  where  the veloci ty and t e m p e r a t u r e  dis t r ibut ions  a r e  p rac t i ca l ly  l inear .  

A theore t ica l  ana lys i s  of the heat  t r a n s f e r  to a f lat  plate  with a ful ly-developed turbulent  boundary 
l aye r  and smal l  values  of X 1 was given by Kest in  and P e r s e n  [24]. Fo r  P r  = 0.71 and t w = const  thei r  solu-  
tion r educes  to the f o r m  

I ( ) ]  X o  o,~ ~-.  (7) 
St = 0.2Rex~,4 1 - -  X 

The same express ion  can a lso  be der ived  f r o m  the r e su l t s  of Ludwieg, who re la ted  the mean  heat  t r a n s f e r  
to a f lat  plate  for  X 1 ~ 0 and tw = coas t  with the equation f o r  the tangential  f r ic t ion s t r e s s  [25]: 

1 
/ v 2  \ - -  

= (8) 

o r  

St= 1.02(~c~)'/3Re~:/3. (~) 

Using Eq. (4). we obtain 
Xe+X~ 

1 Q =  1 I O.&'f(~_)d:: 0.0332 Rex [ 1 - -  
- Rex, 

Xo 

Substituting Eq. (10) into Eq. (9), we obtain 

X ] - - -  

Different ia t ing Eq. (11), we obtain the local  heat  t r a n s f e r  equation 

4 
15 

1 Xo 

(11) 

(12) 

In spite of the i r  s t ruc tu ra l  d i f ference ,  Eqs.  (7) and (12) give the same  values for  the co r rec t ion  f ac to r s  
r (X0/X). 

The exponent of Rex i  in Eqs.  (7) and (12) is n = -0 .4 .  The re fo re ,  as X 1 --* 0, the value of n in the 

heat  t r a n s f e r  fo rmu la s  for  the init ial  sect ion gradual ly  d e c r e a s e s .  In the e s t i m a t e s  of Kest in  and R icha rd -  
son the change in exponent f rom - 0 . 2  to - 0 . 4  occurs  in the range Rex1 = 104-5 �9 104, where  the inequali ty 

X, 

102 < (W/v) S ~ d ~  < 5.103 [26] holds.  Ludwieg p laces  a lower bound on the regions  where  the ex-  
Xo 

ponent approaches  n = - 0 . 4  by the condition X['r/l~a > 25, which co r r e sponds  to l imit ing Reynolds numbers  
of the o rde r  of 100-200 [25]. 

F igure  3a. shows graphs  of q~(X0/X) f r o m  the data of [1, 3-6, 12, 21-23, 27, 28], and a lso  shows Eqs.  
(7) and (12). The value of ~o(X0/X) devia tes  f rom unity by m o r e  than l(f/0 only for  X0/X > 0.75. F o r  X0/X 
> 0.8 the analyt ica l  solution of [28] and the r ecommenda t ions  of [14] based  on i ts  conclusions give values  of 
(p (X0/X) some 10-20~ g r e a t e r  than f r o m  Eq. (6). However ,  it was shown in [12] that the solution of [28] 
is i nco r rec t .  The d i f ference  in absolute  values  of ~(X0/X) as  found f r o m  Eqs.  (6) and (7) and f r o m  (12) do 
not exceed 10-13%. The re fo re ,  the co r r ec t i ons  (P(X0/X) can be der ived  f r o m  the Seban formula  Eq. (6) 
with sufficient  a ccu racy  ove r  the whole range  of Reynolds number  invest igated.  
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Graphs of the cor rec t ion  ~o (X0/X) along the initial 
i so thermal  section, a: 1) f rom [1, 3-6]; 2) f rom [14, 
28]; 3) f rom [26] and Eq. (12); 4) f rom [12, 21-23, 27], 
and corre la t ion of the experimental  data on local heat 
t r ans fe r  in the initial section for  X 0 > Ldy n with c o r r e c -  
tions f rom the Seban formula Eq. (6). b: 1) f rom Eq. (3); 

2 )  Eq. (13); 3) Eq. (7). 

The cor rec t ion  r can be calculated f rom the relat ions given in [21, 22, 27] and the Seban fo r -  
mula which gives identical numerical  resul ts .  But the Seban formula (6), in spite of its being somewhat 
laborious,  has the important  distinction that it gives a s impler  basis  for a cor rec t ion  to the mean heat 
t ransfer .  

The resul ts  of measurements  of local heat t ransfer  coefficients on the thermal  initial section of the 
plate, co r rec ted  using the Seban formula,  are  shown in Fig. 3b. The test  data can be general ized by curve 
2, with a sca t te r  of +10%, and this can be approximated to by the equation 

1 

r'~--O,I6-~3,25Rex 0'53~ _ _  Xo ]0.2 (13) 
s,o:oo,  o  L' ' 

We can introduce the physical  proper t ies  of the flowing medium, according to [1], in the form 
1 

_ oor _ _  X o ] 0 , ,  (i+ 
St o = 0,0146Rex, r ' r -  , [ 1 - -  ~ X ]  J [ 1 X J  " 

Curve 2 for Rex1 > 1.5.105 coincides with curve 1, calculated by the Reynolds formula.  For  Rex1 > 104 

the analytical solution of [24] is confirmed. The region where Eq. (14) holds is bounded by the following 
values of the pa rame te r s :  102 < Rex1 < 5. 106; 0 < X0/X < 0.98; X 0 > Lhy d. 

It is c lear  that for X 0 = 0 and X1 > Ldyn Eq. (14) descr ibes  the local heat t r ans fe r  for  the completely 
heated plate: 

- - 0  53 
_0,16_~_3,25Re X , 

St = 0:0146Rex, ' pr-0,% (15) 

Mean Heat Transfe r .  The mean heat t r ans fe r  was investigated in the heated initial section of a plate 
of a thickness 5 = 8 mm and length L = 300 mm. The construction of the plate has been descr ibed in [18]. 
The heat t ransfer  coefficients were determined by an unsteady method [17] with t w = coast;  Tpot /T w ~ 1.0; 
W = 0.5-80.0 m / s e c ,  tpo t = 50-55~ X 0 > Ldyn. The basic  par t  of the experiment was ca r r i ed  out using 
a lpha-ca lo r imete r s  with heated length X l = 2 mm and X l = 5 mm, in order  to obtain low values of Rex1, and 

682 



I t  [ .- i i' I 1 

o ! i ' 

' i " 

�9 <,1 a I I I  

60 

4,O 

' 
20 

fo 
b 

6 

Fig. 4. 

i 

f 

2 4, 6 IO s 2 # 6 I0 # 2 # f Rex t 

Results  of investigation of mean heat t ransfer  
on the heated initial section of the plate for  X 0 > Ldy n 
(a) and cor re la t ion  of experimental  data on mean heat 
t r ans fe r  to the heated initial section for  X 0 > Ldyn, with 
cor rec t ions  according to the Seban formula (21) (b). 

values of the pa r ame te r  X0/X close to unity. The resul ts  of t h e m e a s u r e m e n t s  a re  shown in Fig. 4a, to- 
gether with the experimental  data of [18]. Curve 1 represen t s  the formula given in [18] for  the mean heat 
t ransfer :  

St ---- 1:93 Re~ '3 (lg Rex,) -6'1. (16) 

Curve 2 was calculated f rom the equation 

St = 0:041 Re~ ~ (17) 

This formula was obtained by integration of Eq. (3b). The experimental  data on mean heat t r ans fe r  is 
qualitatively in good agreement  with the resul ts  of Iota[  values of a k (see Fig. 2a). The test  points are  
layered in t e rms  of the pa r ame te r  X0/X , and a re  grouped on the whole along curve 1, which has a slope 
close to n = - 0 . 4  for Rex1 > 2 �9 104. In the range X0/X = 0.7-0.98 the separation reaches  30%, and the 
values of Stanton number found using the a lpha-ca lo r imete r s  with the heated length X l = 2 mm lie below 
curve 1 by 20-25%. 

In analogy with Eq. (5), for  the mean heat t r ans fe r  coefficients we can write 

S-t o = St ~o (Xo/X). (18) 

A number of recommendat ions  for determining the correc t ion  ~(X0/X) are  given in [8-11, 14, 16]. 
These are  all based on experimental  data on mean heat t ransfer ,  obtained for high values of Rex1, g rea te r  
than 5.104, as a rule.  

Integrating Eq. (3) with the Seban cor rec t ions  we obtain 
8 ,_  x<o.sr.,<,,, , _  

The relat ions proposed by Jakob and Dow [10], Maisel and Sherwood [11], and Tessin  and Jakob [16] lead 
to numerical  values of q~(X0/X) differing by no more  than 10% from values calculated according to Eq. (19). 
The data of Edwards and Furbe r  [8, 9] are  tabulated as a function of Xo/X and Rex1. These data lie above 
the values calculated f rom Eq. (19) by 10-15%. 

An analytical solution for  the mean heat t r ans fe r  to the heated initial section for  small  Rex1 is given 
in [24]: 
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The co r rec t ion  ~(X0/X) for  X 1 ~ 0 can a l so  be calcula ted f rom Eq. (11), which is der ived f r o m  the 

Ludwieg solution. In both ca se s  the values of the co r rec t ion  ~(X0/X) differ  f rom those calculated using 
Eq. (19) by  not m o r e  than 10%. Thus,  as  was t rue  for  a co r re l a t ion  of the data on local  heat t r an s f e r  in 
the heated init ial  sect ion,  i t  is  convenient  to use  the Seban re la t ion cor rec t ion  in the mean  heat  t r an s f e r  
fo rmulas  

8 

Figure  4b shows re su l t s  of invest igat ion of mean  heat  t r a n s f e r  on the heated init ial  sect ion,  with 
co r rec t ion  accord ing  to Eq. (19). Curve 1 co r re sponds  to Eq. (11) and the formula  of Kestin and P e r s e n  
(20). The theore t ica l  solutions a re  in s a t i s f ac to ry  a g r e e m e n t  with the exper imen t  in the range 8.102 
< Rex i  < 2.5�9 104. However ,  for  Rex1 < 800 a sys temat ic  deviation of the tes t  points above curve  1 is  ob- 

se rved .  All the tes t  data Can be approx imated  within • by curve  3, which has the equation 
8 

_ r x,, 1o. 1-  - .  

F o r  Rex i  > 105 cu rve  3 tends to  curve  2 asympto t ica l ly ;  cu rve  2 was calculated f r o m  Eq. (17) for  the hypo- 
thetical  case  where  there  is  comple te  heating of the plate  and turbulence is  developed f rom the ve ry  begin-  
ning of the flow in the boundary l aye r .  Equation (22) is  conf i rmed by the exper iment  in the range Rex i  = 2 
�9 102-1.5 �9 105, X0/X = (0-0.99). 

Xl  

X0 
X = X 0 + X t 
6 

L 

Ldyn 
O~ C 

c~ r 
tw 
tpot 
W 
s 

T 

Cf 
E 
k 
~(x0/x) 
u and 1/ 
0 aud Cp 
a and ~. 
Re X = WX/p 
St = a c/OWcp 
P r  = u/a 
Nu = a k X l / h  

N O T A T I O N  

is  the heated length; 
is the length of the ini t ia l  unheated sect ion;  
is the coordinate  calcula ted f r o m  the leading edge; 
is the plate  th ickness;  
is  the plate  length; 
is  the length of the dynamic init ial  sect ion;  
Is the convect ive heat  t r a n s f e r  coefficient;  
Is  the radia t ive  heat  t r a n s f e r  coefficient;  
is  the plate  su r face  t e m p e r a t u r e ;  
is  the a i r  t e m p e r a t u r e ;  
is  the a i r  speed; 
is  the degree  of turbulence;  
is  the tangential  f r ic t ion s t r e s s ;  
is  the local  f r ic t ion coefficient;  
is the e m f  of the heat  flux gage; 
is  the heat  flux gage constant;  
i s  the co r rec t ion  to the length of  the ini t ial  unheated sect ion;  
a r e  the coeff icients  of dynamic and k inemat ic  v i scos i ty  of a i r ;  
a r e  the density and specif ic  heat  of a i r ;  
a r e  the the rma l  diffusivity and the rma l  conductivity of a i r ;  
is  the Reynolds number ;  
is  the Stanton number ;  
is  the Prandt l  number ;  
is  the Nusse t t  number�9 

1. 

2 �9  

3. 
4. 
5. 
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